SPIDER2: A Package to Predict Secondary Structure, Accessible Surface Area, and Main-Chain Torsional Angles by Deep Neural Networks.
نویسندگان
چکیده
Predicting one-dimensional structure properties has played an important role to improve prediction of protein three-dimensional structures and functions. The most commonly predicted properties are secondary structure and accessible surface area (ASA) representing local and nonlocal structural characteristics, respectively. Secondary structure prediction is further complemented by prediction of continuous main-chain torsional angles. Here we describe a newly developed method SPIDER2 that utilizes three iterations of deep learning neural networks to improve the prediction accuracy of several structural properties simultaneously. For an independent test set of 1199 proteins SPIDER2 achieves 82 % accuracy for secondary structure prediction, 0.76 for the correlation coefficient between predicted and actual solvent accessible surface area, 19° and 30° for mean absolute errors of backbone φ and ψ angles, respectively, and 8° and 32° for mean absolute errors of Cα-based θ and τ angles, respectively. The method provides state-of-the-art, all-in-one accurate prediction of local structure and solvent accessible surface area. The method is implemented, as a webserver along with a standalone package that are available in our website: http://sparks-lab.org .
منابع مشابه
Predicting the errors of predicted local backbone angles and non-local solvent- accessibilities of proteins by deep neural networks
MOTIVATION Backbone structures and solvent accessible surface area of proteins are benefited from continuous real value prediction because it removes the arbitrariness of defining boundary between different secondary-structure and solvent-accessibility states. However, lacking the confidence score for predicted values has limited their applications. Here we investigated whether or not we can ma...
متن کاملImproving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning
Direct prediction of protein structure from sequence is a challenging problem. An effective approach is to break it up into independent sub-problems. These sub-problems such as prediction of protein secondary structure can then be solved independently. In a previous study, we found that an iterative use of predicted secondary structure and backbone torsion angles can further improve secondary s...
متن کاملReal-value and confidence prediction of protein backbone dihedral angles through a hybrid method of clustering and deep learning
Background. Protein dihedral angles provide a detailed description of protein local conformation. Predicted dihedral angles can be used to narrow down the conformational space of the whole polypeptide chain significantly, thus aiding protein tertiary structure prediction. However, direct angle prediction from sequence alone is challenging. Method. In this study, we present a novel method to pre...
متن کاملEvaluation of Ultimate Torsional Strength of Reinforcement Concrete Beams Using Finite Element Analysis and Artificial Neural Network
Due to lack of theory of elasticity, estimation of ultimate torsional strength of reinforcement concrete beams is a difficult task. Therefore, the finite element methods could be applied for determination of strength of concrete beams. Furthermore, for complicated, highly nonlinear and ambiguous status, artificial neural networks are appropriate tools for prediction of behavior of such states. ...
متن کاملAn adaptive estimation method to predict thermal comfort indices man using car classification neural deep belief
Human thermal comfort and discomfort of many experimental and theoretical indices are calculated using the input data the indicator of climatic elements are such as wind speed, temperature, humidity, solar radiation, etc. The daily data of temperature، wind speed، relative humidity، and cloudiness between the years 1382-1392 were used. In the First step، Tmrt parameter was calculated in the Ray...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Methods in molecular biology
دوره 1484 شماره
صفحات -
تاریخ انتشار 2017